
Package: moder (via r-universe)
August 27, 2024

Title Mode Estimation

Version 0.2.1.9000

Description Determines single or multiple modes (most frequent
values). Checks if missing values make this impossible, and
returns 'NA' in this case. Dependency-free source code. See
Franzese and Iuliano (2019)
<doi:10.1016/B978-0-12-809633-8.20354-3>.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests devtools, ggplot2, knitr, rmarkdown, stats, testthat (>=
3.0.0), tibble, utils

Config/testthat/edition 3

URL https://github.com/lhdjung/moder, https://lhdjung.github.io/moder/

BugReports https://github.com/lhdjung/moder/issues

VignetteBuilder knitr

Collate 'counts.R' 'frequencies.R' 'frequency-grid-df.R'
'frequency-grid-plot.R' 'mode-proper.R' 'mode-df.R'
'mode-possible.R' 'predicates.R' 'utils.R'

Repository https://lhdjung.r-universe.dev

RemoteUrl https://github.com/lhdjung/moder

RemoteRef HEAD

RemoteSha 2663e14d11a1a708dc9bce1b2a4fee5ce5bca2d9

Contents
frequency_grid_df . 2
frequency_grid_plot . 3
mode-possible . 5

1

https://doi.org/10.1016/B978-0-12-809633-8.20354-3
https://github.com/lhdjung/moder
https://lhdjung.github.io/moder/
https://github.com/lhdjung/moder/issues

2 frequency_grid_df

mode_all . 6
mode_count . 7
mode_count_range . 8
mode_df . 10
mode_first . 11
mode_frequency . 13
mode_frequency_range . 14
mode_is_trivial . 15
mode_single . 16

Index 19

frequency_grid_df Frequency grid data frame

Description

NOTE: This function is currently experimental and shouldn’t be relied upon.

frequency_grid_df() takes a vector and creates an extended frequency table about it. Internally,
this is used as a basis for frequency_grid_plot().

Usage

frequency_grid_df(x, max_unique = NULL)

Arguments

x A vector.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Value

A data frame with these columns:

• x: The input vector, with each unique known value repeated to be as frequent as the most
frequent one.

• freq (integer): Hypothetical frequency of each x value.

• is_missing (logical): Is the observation absent from the input vector?

• can_be_filled (logical): Are there enough NAs so that one of them might hypothetically
represent the x value in question, implying that there would be at least as many observations
of that value as the respective frequency (freq) indicates?

• is_supermodal (logical): Is the frequency of this value greater than the maximum frequency
among known values?

frequency_grid_plot 3

Limitations

See the limitations section of frequency_grid_plot().

Examples

x <- c("a", "a", "a", "b", "b", "c", NA, NA, NA, NA, NA)
frequency_grid_df(x)

frequency_grid_plot Frequency grid ggplot

Description

NOTE: This function is currently experimental and shouldn’t be relied upon.

Call frequency_grid_plot() to visualize the absolute frequencies of values in a vector. Each
observation is plotted distinctly, resulting in a hybrid of a histogram and a scatterplot.

• Boxes are known values.

• Circles with NA labels are missing values.

• Empty circles are no values at all: They signify that certain unique values would have to be
more frequent in order for all unique values to be equally frequent.

Usage

frequency_grid_plot(
x,
show_line_grid = FALSE,
show_line_mode = FALSE,
label_missing = "NA",
color_label_missing = "red2",
color_missing = "red2",
color_non_missing = "blue2",
alpha_missing = 1,
alpha_non_missing = 0.75,
size_label_missing = 3,
size_missing = 10,
size_non_missing = 10,
shape_missing = 1,
shape_non_missing = 15,
expand = 0.1

)

4 frequency_grid_plot

Arguments

x A vector with frequencies to visualize.

show_line_grid Logical. Should gridlines be present, crossing at each observation? Default is
FALSE.

show_line_mode Logical. Should a dashed line demarcate the mode(s) among known values from
the missing values that might add to these modes, if there are any? Default is
FALSE.

label_missing String. Label used for missing values. Default is "NA".
color_label_missing, color_missing, color_non_missing

String. Colors of the data points. Defaults are "red2" for missing data points as
well as their labels, and "blue2" for non-missing data points.

alpha_missing, alpha_non_missing
Numeric. Opacity of the data points. Defaults are 1 and 0.75, respectively.

size_label_missing, size_missing, size_non_missing
Numeric. Sizes of the data points. Defaults are 3 for the label and 10 for both
symbols.

shape_missing, shape_non_missing
Numeric or string. Signifiers for the shapes of the data points. Defaults are 1
(circle) and 15 (square filled), respectively.

expand Numeric. Padding whitespace between the axes and the data points. The dis-
tance is the same on all four sides due to the grid structure. Default is 0.1.

Value

A ggplot object. To save it, call ggplot2::ggsave().

Limitations

Certain assumptions about missing values are currently hard-coded in the function. In the future,
they should become optional. These assumptions are:

• All missings represent a known value. For example, in c(1, 2, NA), the NA is either 1 or 2.

• The missings are as evenly distributed across known values as possible. Therefore, in c(1,
2, NA, NA), one NA is a 1 and the other one is a 2. This is clearly not reasonable as a general
assumption. It is derived from moder’s way of determining possible extreme cases.

See Also

frequency_grid_df(), which forms the basis of the current function.

Examples

x <- c("a", "a", "a", "b", "b", "c", NA, NA, NA, NA, NA)

Basic usage:
frequency_grid_plot(x)

mode-possible 5

With "N/A" as a marker of missing values
instead of "NA":
frequency_grid_plot(x, label_missing = "N/A")

Black and white mode:
frequency_grid_plot(

x, color_label_missing = "black",
color_missing = "black", color_non_missing = "black"

)

mode-possible Possible sets of modes

Description

mode_possible_min() and mode_possible_max() determine the minimal and maximal sets of
modes, given the number of missing values.

Usage

mode_possible_min(x, accept = FALSE, multiple = NULL)

mode_possible_max(x, accept = FALSE, multiple = NULL)

Arguments

x A vector to search for its possible modes.

accept Logical. If accept is set to TRUE, the functions don’t necessarily return the
minimal or maximal sets of modes but all values that might be part of those sets.
Default is FALSE. See details.

multiple Deprecated; will be removed in the future. Old name of accept.

Details

If accept = TRUE, the functions return multiple values that may or may not be modes depending
on the true values behind NAs. Why is this disabled by default? In cases where multiple unique
values would be modes if and only if one or more missing values represented them but there are
not enough missing values to represent all of them, any values that are not represented by enough
NAs would not be modes. This makes it unclear which unique values are part of the minimal and
maximal sets of modes, so the default of accept is to return NA in these cases.

Value

Vector of the same type as x. By default, it contains the minimal or maximal possible sets of modes
(values tied for most frequent) in x. If the functions can’t determine these possible modes because
of missing values, they return NA.

6 mode_all

See Also

mode_count_range() for the minimal and maximal numbers of possible modes. They can always
be determined, even if the present functions return NA.

Examples

"a" is guaranteed to be a mode,
"b" might also be one, but
"c" is impossible:
mode_possible_min(c("a", "a", "a", "b", "b", "c", NA))
mode_possible_max(c("a", "a", "a", "b", "b", "c", NA))

Only `8` can possibly be the mode
because, even if `NA` is `7`, it's
still less frequent than `8`:
mode_possible_min(c(7, 7, 8, 8, 8, 8, NA))
mode_possible_max(c(7, 7, 8, 8, 8, 8, NA))

No clear minimal or maximal set
of modes because `NA` may tip
the balance between `1` and `2`
towards a single mode:
mode_possible_min(c(1, 1, 2, 2, 3, 4, 5, NA))
mode_possible_max(c(1, 1, 2, 2, 3, 4, 5, NA))

With `accept = TRUE`, the functions
return all values that might be part of
the min / max sets of modes; not these
sets themselves:
mode_possible_min(c(1, 1, 2, 2, 3, 4, 5, NA), accept = TRUE)
mode_possible_max(c(1, 1, 2, 2, 3, 4, 5, NA), accept = TRUE)

mode_all All modes

Description

mode_all() returns the set of all modes in a vector.

Usage

mode_all(x, na.rm = FALSE, na.rm.amount = 0)

Arguments

x A vector to search for its modes.
na.rm Logical. Should missing values in x be removed before computation proceeds?

Default is FALSE.
na.rm.amount Numeric. Alternative to na.rm that only removes a specified number of missing

values. Default is 0.

mode_count 7

Value

A vector with all modes (values tied for most frequent) in x. If the modes can’t be determined
because of missing values, returns NA instead.

See Also

• mode_first() for the first-appearing mode.

• mode_single() for the only mode, or NA if there are more.

Examples

Both `3` and `4` are the modes:
mode_all(c(1, 2, 3, 3, 4, 4))

Only `8` is:
mode_all(c(8, 8, 9))

Can't determine the modes here --
`9` might be another mode:
mode_all(c(8, 8, 9, NA))

Either `1` or `2` could be a
single mode, depending on `NA`:
mode_all(c(1, 1, 2, 2, NA))

`1` is the most frequent value,
no matter what `NA` stands for:
mode_all(c(1, 1, 1, 2, NA))

Ignore `NA`s with `na.rm = TRUE`
(there should be good reasons for this!):
mode_all(c(8, 8, 9, NA), na.rm = TRUE)
mode_all(c(1, 1, 2, 2, NA), na.rm = TRUE)

mode_count Modal count

Description

mode_count() counts the modes in a vector. Thin wrapper around mode_all().

Usage

mode_count(x, na.rm = FALSE, max_unique = NULL)

8 mode_count_range

Arguments

x A vector to search for its modes.

na.rm Logical. Should missing values in x be removed before computation proceeds?
Default is FALSE.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Value

Integer. Number of modes (values tied for most frequent) in x. If the modes can’t be determined
because of missing values, returns NA instead.

Examples

There are two modes, `3` and `4`:
mode_count(c(1, 2, 3, 3, 4, 4))

Only one mode, `8`:
mode_count(c(8, 8, 9))

Can't determine the number of modes
here -- `9` might be another mode:
mode_count(c(8, 8, 9, NA))

Either `1` or `2` could be a
single mode, depending on `NA`:
mode_count(c(1, 1, 2, 2, NA))

`1` is the most frequent value,
no matter what `NA` stands for:
mode_count(c(1, 1, 1, 2, NA))

Ignore `NA`s with `na.rm = TRUE`
(there should be good reasons for this!):
mode_count(c(8, 8, 9, NA), na.rm = TRUE)
mode_count(c(1, 1, 2, 2, NA), na.rm = TRUE)

mode_count_range Modal count range

Description

mode_count_range() determines the minimal and maximal number of modes given the number of
missing values.

mode_count_range 9

Usage

mode_count_range(x, max_unique = NULL)

Arguments

x A vector to search for its possible modes.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Details

If x is a factor, max_unique should be "known" or there is a warning. This is because a factor’s
levels are supposed to include all of its possible values.

Value

Integer (length 2). Minimal and maximal number of modes (values tied for most frequent) in x.

Examples

If `NA` is `7` or `8`, that number is
the only mode; otherwise, both numbers
are modes:
mode_count_range(c(7, 7, 8, 8, NA))

Same result here -- `7` is the only mode
unless `NA` is secretly `8`, in which case
there are two modes:
mode_count_range(c(7, 7, 7, 8, 8, NA))

But now, there is no way for `8` to be
as frequent as `7`:
mode_count_range(c(7, 7, 7, 7, 8, 8, NA))

The `NA`s might form a new mode here
if they are both, e.g., `9`:
mode_count_range(c(7, 7, 8, 8, NA, NA))

However, if there can be no values beyond
those already known -- `7` and `8` --
the `NA`s can't form a new mode.
Specify this with `max_unique = "known"`:
mode_count_range(c(7, 7, 8, 8, NA, NA), max_unique = "known")

10 mode_df

mode_df Tabulate mode estimates with the certainty about them

Description

mode_df() takes a data frame (or another list) of numeric vectors and computes the mode or modes
of each element. Where the true mode is unknown due to missing values, more and more NAs are
ignored until an estimate for the mode is found.

Estimates are presented along with information about whether they are known to be the true mode,
how many NAs had to be ignored during estimation, the rate of ignored NAs, etc.

Usage

mode_df(
x,
method = c("first", "all", "single"),
na.rm.from = c("first", "last", "random"),
accept = FALSE,
multiple = c("NA", "min", "max", "mean", "median", "first", "last", "random")

)

Arguments

x List of vectors. Each vector needs to be numeric or similar. Note that data
frames are lists, so x can be a data frame.

method String. How to determine the mode(s)? Options are:

• "first" for mode_first(), the default.
• "all" for mode_all(). This may return multiple values per estimate.
• "single" for mode_single(). The only option that can return NA esti-

mates.

na.rm.from String. Only relevant to the default method = "first". Where to start when
removing NAs from x? Options are "start", "end", and "random". Default is
"start".

accept Passed on to mode_first() and mode_single(). Default is FALSE.

multiple Passed on to mode_single(). Default is "NA".

Details

The function deals with missing values (NAs) by first checking whether they make the true mode
unknown. If they do, it removes one NA, then checks again; and so on until an estimate is found.

This strategy is based on the na.rm.amount argument of mode_first(), mode_all(), and mode_single().
It represents a middle way between simply ignoring all NAs and not even trying to compute an esti-
mate. Instead, it only removes the minimum number of NAs necessary, because some distributions
have a known mode (or set of modes) even if some of their values are missing. By keeping track of
the removed NAs, mode_df() quantifies the uncertainty about its estimates.

mode_first 11

Value

Tibble (data frame) with these columns:

• term: the names of x elements. Only present if any are named.

• estimate: the modes of x elements, ignoring as many NAs as necessary. List-column if
method = "all".

• certainty: TRUE if the corresponding estimate is certain to be the true mode, and FALSE if
this is unclear due to missing values.

• na_ignored: the number of missing values that had to be ignored to arrive at the estimate.

• na_total: the total number of missing values.

• rate_ignored_na: the proportion of missing values that had to be ignored from among all
missing values.

• sum_total: the total number of values, missing or not.

• rate_ignored_sum: the proportion of missing values that had to be ignored from among all
values, missing or not.

Examples

Use a list of numeric vectors:
my_list <- list(

a = 1:15,
b = c(1, 1, NA),
c = c(4, 4, NA, NA, NA, NA),
d = c(96, 24, 3, NA)

)

mode_df(my_list)

Data frames are allowed:
mode_df(iris[1:4])

mode_first The first-appearing mode

Description

mode_first() returns the mode that appears first in a vector, i.e., before any other modes.

Usage

mode_first(
x,
na.rm = FALSE,
na.rm.amount = 0,
na.rm.from = c("first", "last", "random"),
accept = FALSE

)

12 mode_first

Arguments

x A vector to search for its first mode.

na.rm Logical. Should missing values in x be removed before computation proceeds?
Default is FALSE.

na.rm.amount Numeric. Alternative to na.rm that only removes a specified number of missing
values. Default is 0.

na.rm.from String. If na.rm.amount is used, from which position in x should missing values
be removed? Options are "first", "last", and "random". Default is "first".

accept Logical. Should the first-appearing value known to be a mode be accepted? If
FALSE (the default), returns NA if a value that appears earlier might be another
mode due to missing values.

Details

Unlike mode_all() and mode_single(), mode_first() has an na.rm.from argument. That is
because it cares about the order of x values, whereas the other ones do not.

Value

The first mode (most frequent value) in x. If it can’t be determined because of missing values,
returns NA instead.

See Also

• mode_all() for the full set of modes.

• mode_single() for the only mode, or NA if there are more.

Examples

`2` is most frequent:
mode_first(c(1, 2, 2, 2, 3))

Can't determine the first mode --
it might be `1` or `2` depending
on the true value behind `NA:
mode_first(c(1, 1, 2, 2, NA))

Ignore `NA`s with `na.rm = TRUE`
(there should be good reasons for this!):
mode_first(c(1, 1, 2, 2, NA), na.rm = TRUE)

`1` is the most frequent value,
no matter what `NA` stands for:
mode_first(c(1, 1, 1, 2, NA))

By default, the function insists on
the first mode, so it won't accept the
first value *known* to be a mode if an
earlier value might be a mode, too:

mode_frequency 13

mode_first(c(1, 2, 2, NA))

You may accept the first-known mode:
mode_first(c(1, 2, 2, NA), accept = TRUE)

mode_frequency Modal frequency

Description

Call mode_frequency() to get the number of times that a vector’s mode appears in the vector.

See mode_frequency_range() for bounds on an unknown frequency.

Usage

mode_frequency(x, na.rm = FALSE, max_unique = NULL)

Arguments

x A vector to check for its modal frequency.

na.rm Logical. Should missing values in x be removed before computation proceeds?
Default is FALSE.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Details

By default (na.rm = FALSE), the function returns NA if any values are missing. That is because
missings make the frequency uncertain even if the mode is known: any missing value may or may
not be the mode, and hence count towards the modal frequency.

Value

Integer (length 1) or NA.

See Also

mode_first(), which the function wraps.

14 mode_frequency_range

Examples

The mode, `9`, appears three times:
mode_frequency(c(7, 8, 8, 9, 9, 9))

With missing values, the frequency
is unknown, even if the mode isn't:
mode_frequency(c(1, 1, NA))

You can ignore this problem and
determine the frequency among known values
(there should be good reasons for this!):
mode_frequency(c(1, 1, NA), na.rm = TRUE)

mode_frequency_range Modal frequency range

Description

mode_frequency_range() determines the minimum and maximum number of times that a vector’s
mode appears in the vector. The minimum assumes that no NAs are the mode; the maximum assumes
that all NAs are.

Usage

mode_frequency_range(x, max_unique = NULL)

Arguments

x A vector to check for its modal frequency.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Details

If there are no NAs in x, the two return values are identical. If all x values are NA, the return values
are 1 (no two x values are the same) and the total number of values (all x values are the same).

Value

Integer (length 2).

See Also

mode_frequency(), for the precise frequency (or NA if it can’t be determined).

mode_is_trivial 15

Examples

The mode is `7`. It appears four or
five times because the `NA` might
also be a `7`:
mode_frequency_range(c(7, 7, 7, 7, 8, 8, NA))

All of `"c"`, `"d"`, and `"e"` are the modes,
and each of them appears twice:
mode_frequency_range(c("a", "b", "c", "c", "d", "d", "e", "e"))

mode_is_trivial Is the mode trivial?

Description

mode_is_trivial() checks whether all values in a given vector are equally frequent. The mode is
not too informative in such cases.

Usage

mode_is_trivial(x, na.rm = FALSE, max_unique = NULL)

Arguments

x A vector to search for its modes.

na.rm Logical. Should missing values in x be removed before computation proceeds?
Default is FALSE.

max_unique Numeric or string. If the maximum number of unique values in x is known,
set max_unique to that number. This rules out that NAs represent values beyond
that number (see examples). Set it to "known" instead if no values beyond those
already known can occur. Default is NULL, which assumes no maximum.

Details

The function returns TRUE whenever x has length < 3 because no value is more frequent than another
one. Otherwise, it returns NA in these cases:

• Some x values are missing, all known values are equal, and the number of missing values
is divisible by the number of unique known values. Thus, the missings don’t necessarily
break the tie among known values, and it is unknown whether there is a value with a different
frequency.

• All known values are modes if the NAs "fill up" the non-modal values exactly, i.e., without any
NAs remaining.

• Some NAs remain after "filling up" the non-modal values with NAs (so that they are hypothet-
ically modes), and the number of remaining NAs is divisible by the number of unique known
values.

16 mode_single

• There are so many missing values that they might form mode-sized groups of values that are
not among the known values, and the number of NAs is divisible by the modal frequency so
that all (partly hypothetical) values might be equally frequent. You can limit the number of
such hypothetical values by specifying max_unique. The function might then return FALSE
instead of NA.

Value

Logical (length 1).

Examples

The mode is trivial if
all values are equal...
mode_is_trivial(c(1, 1, 1))

...and even if all unique
values are equally frequent:
mode_is_trivial(c(1, 1, 2, 2))

It's also trivial if
all values are different:
mode_is_trivial(c(1, 2, 3))

Here, the mode is nontrivial
because `1` is more frequent than `2`:
mode_is_trivial(c(1, 1, 2))

Two of the `NA`s might be `8`s, and
the other three might represent a value
different from both `7` and `8`. Thus,
it's possible that all three distinct
values are equally frequent:
mode_is_trivial(c(7, 7, 7, 8, rep(NA, 5)))

The same is not true if all values,
even the missing ones, must represent
one of the known values:
mode_is_trivial(c(7, 7, 7, 8, rep(NA, 5)), max_unique = "known")

mode_single The single mode

Description

mode_single() returns the only mode in a vector. If there are multiple modes, it returns NA by
default.

mode_single 17

Usage

mode_single(
x,
na.rm = FALSE,
na.rm.amount = 0,
accept = FALSE,
multiple = c("NA", "min", "max", "mean", "median", "first", "last", "random")

)

Arguments

x A vector to search for its mode.

na.rm Logical. Should missing values in x be removed before computation proceeds?
Default is FALSE.

na.rm.amount Numeric. Alternative to na.rm that only removes a specified number of missing
values. Default is 0.

accept Logical. Should the minimum set of modes be accepted to check for a single
mode? If FALSE (the default), insists on the complete set and returns NA if it
can’t be determined.

multiple String or integer (length 1), or a function. What to do if x has multiple modes?
The default returns NA. All other options rely on the modal values: "min", "max",
"mean", "median", "first", "last", and "random". Alternatively, multiple
can be an index number, or a function that summarizes the modes. See details.

Details

If accept is FALSE (the default), the set of modes is obtained via mode_all() instead of mode_possible_min().
Set it to TRUE to avoid returning NA when some, though not all modes are known. The purpose of
the default is to insist on a single mode.

If x is a string vector and multiple is "min" or "max", the mode is selected lexically, just like
min(letters) returns "a". The "mean" and "median" options return NA with a warning. For
factors, "min", "max", and "median" are errors, but "mean" returns NA with a warning. These are
inconsistencies in base R.

The multiple options "first" and "last" always select the mode that appears first or last in x.
Index numbers, like multiple = 2, allow you to select more flexibly. If multiple is a function, its
output must be length 1.

Value

The only mode (most frequent value) in x. If it can’t be determined because of missing values, NA
is returned instead. If there are multiple modes, NA is returned by default (multiple = "NA").

See Also

• mode_first() for the first-appearing mode.

• mode_all() for the complete set of modes.

• mode_possible_min() for the minimal set of modes.

18 mode_single

Examples

`8` is the only mode:
mode_single(c(8, 8, 9))

With more than one mode, the function
returns `NA`:
mode_single(c(1, 2, 3, 3, 4, 4))

Can't determine the modes here --
`9` might be another mode:
mode_single(c(8, 8, 9, NA))

Accept `8` anyways if it's
sufficient to just have any mode:
mode_single(c(8, 8, 9, NA), accept = TRUE)

`1` is the most frequent value,
no matter what `NA` stands for:
mode_single(c(1, 1, 1, 2, NA))

Ignore `NA`s with `na.rm = TRUE`
(there should be good reasons for this!):
mode_single(c(8, 8, 9, NA), na.rm = TRUE)

Index

frequency_grid_df, 2
frequency_grid_df(), 4
frequency_grid_plot, 3

mode-possible, 5
mode_all, 6
mode_all(), 7, 10, 12, 17
mode_count, 7
mode_count_range, 8
mode_count_range(), 6
mode_df, 10
mode_first, 11
mode_first(), 7, 10, 13, 17
mode_frequency, 13
mode_frequency(), 14
mode_frequency_range, 14
mode_frequency_range(), 13
mode_is_trivial, 15
mode_possible_max (mode-possible), 5
mode_possible_min (mode-possible), 5
mode_possible_min(), 17
mode_single, 16
mode_single(), 7, 10, 12

19

	frequency_grid_df
	frequency_grid_plot
	mode-possible
	mode_all
	mode_count
	mode_count_range
	mode_df
	mode_first
	mode_frequency
	mode_frequency_range
	mode_is_trivial
	mode_single
	Index

